

# Metal Additive Manufacturing Myths:

The truth about powder reuse and its effect on mechanical properties

Andrew Carter | Senior Manufacturing Engineer





# **Strata**SyS 30 Years of Additive Applied.

Headquarters: Eden Prairie, MN and Rehovot, Israel Over **1,200** Granted or Pending Additive Manufacturing Patents Globally

**\$668 Million** Revenue (2017) Publicly Traded On Nasdaq (SSYS)

**Over** 30

Technology and Leadership Awards



## **ABOUT STRATASYS DIRECT MANUFACTURING**

Stratasys Direct Manufacturing is one of the largest providers of 3D printing and advanced manufacturing services.

- 7 U.S. manufacturing facilities
- 9 Manufacturing technologies
- 500+ employees
- Certifications: ISO 9001, AS9100
- ITAR registered







### **MANUFACTURING FACILITIES**

- Valencia, CA
- Poway, CA
- Tucson, AZ
- Phoenix, AZ

- Eden Prairie, MN
- Austin, TX
- Belton, TX



#### **OUR TEAM**

Our experienced team of project and applications engineers are committed to your success with:

- Design support for advanced manufacturing
- Technical direction and recommendations
- Material, technology and build optimization for quality, speed and affordability







SECTION TWO

# Additive Metal Production



## **ADDITIVE METAL CAPACITY**

- 2 Facilities (Austin, TX & Belton, TX)
- 17 DMLS MACHINES
  - 11 EOS M280'S
  - 4 EOS M290's
  - 1 EOS M400
  - 1 EOS M400-4
- 2 Fully supported Machine Shops
- Dedicated Quality Lab
  - Cutup Metallography
  - Flow Bench, Hydrostatic Tester
  - CMM





# **ADDITIVE ALLOYS**

Current Offering SS 17-4 PH\* SS316L AISi10Mg Ti 6-4 Gd5\* CoCr INCONEL™ 625\* INCONEL™ 718\* (API-Std avail.) MONEL™ K500

\*Powder chemistry ordered to meet respective AMS standards.\*

Standard Text = Performance Super Alloys

**Bold** Text = Quick Turn Alloys

Sourced directly from multiple established atomizers.



Materials are batched and blended to ensure full traceability









## ADDITIVE MANUFACTURING IS MOSTLY CONVENTIONAL



#### THE TRUTH ABOUT LEADTIMES

Stratasys Direct Mfg. Approved Vendor

| Task                                            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13       | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|-------------------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| DMLS                                            |   |   |   |   |   |   |   |   |   |    |    |    |          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Powder Removal &<br>Inspection                  |   |   |   |   |   |   |   |   |   |    |    |    |          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Stress Relief                                   |   |   |   |   |   |   |   |   |   |    |    |    |          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Plate Part Separation & Component Serialization |   |   |   |   |   |   |   |   |   |    |    |    |          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| HIP & Heat Treat                                |   |   |   |   |   |   |   |   |   |    |    |    |          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Post Machining                                  |   |   |   |   |   |   |   |   |   |    |    |    |          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Inspection                                      |   |   |   |   |   |   |   |   |   |    |    |    |          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Typical RP Lead Time                            |   |   |   |   |   |   |   |   |   |    |    |    | <b>S</b> |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

SECTION TWO

# The truth of powder recycling - "its happening"



# Powder handling is an after thought... (by the machine manufacturers')

Here is how its being done by the OEM's ...

EOS Recommended method M280-M290









#### Powder handling is an after thought... (by the OEM's)

Here is how its being done by the OEM's ... EOS Recommended method M400's







# Powder handling is

#### Here is how its being don EOS Recommended meth





EM's)

Crown



#### Powder handling is an after thought... (by the OEM's)

| Machine<br>Manufacturer | Powder Handling     |  |
|-------------------------|---------------------|--|
| Additive Industries     | Internal            |  |
| AddUp                   | Mixed               |  |
| GE (Concept Laser)      | External            |  |
| 3D Systems              | Internal & External |  |
| EOS                     | External            |  |
| Rennishaw               | Internal            |  |
| SLM Solutions           | Mixed               |  |
| Trumphf                 | External            |  |
| Velo3D                  | Internal            |  |

No equipment manufacturer is concerned with material traceability.



#### **MANUFACTURING SCENARIO**



DIRECT MANUFACTURING

Blend Composition vs.Build Iteration

(assuming 75% recycling & 25 refresh)

#### **MANUFACTURING SCENARIO**



- SDM Recycles 100% material
- The majority of powder has been recycled.
- No test method is identified to *qualify* recycled powder





#### Start Production – 4 machines producing product, 4 powder evolution ID #'s





#### **Start Production** – execute 4 builds and refresh with virgin each time



■ Recycled 11



**Unplanned Maintenance & Increase customer demand** – 6 machines producing product, swapped material between two machines, 6 powder evolution ID numbers.





#### Unplanned Maintenance & Increase customer demand – execute 3 builds on all machines





Full Production – All machine capacity dedicated to producing product, 8 powder evolution ID numbers











#### Full Production – execute 5 more builds across all machines



#### **MATERIAL RECYCLING STATION**

#### Sometimes simplicity is best.





#### **MATERIAL TRACEABLITY**

| 69971<br>3/14/2018 10:06 AM                                                         | Co<br>New Build                                                                           | Edit Coov         | Wilzation          | Blend Model   | ata Sgrap  | Traveler    | Generate     | Print               | Ø<br>Attachments |                            |                              |         |       |        |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------|--------------------|---------------|------------|-------------|--------------|---------------------|------------------|----------------------------|------------------------------|---------|-------|--------|--|--|
| Zach Purcell                                                                        |                                                                                           |                   |                    | View          | er Metrics |             | Serials      | Serials             | •                |                            |                              |         |       |        |  |  |
| Build _                                                                             | E                                                                                         | dit _             |                    | Print         |            |             |              | Production          |                  |                            |                              |         |       |        |  |  |
| Search                                                                              | ~~                                                                                        | Build Setup       |                    |               |            |             |              |                     |                  |                            | Parts                        |         |       |        |  |  |
| Search Filter  Search Filter  Fully Evilo Austra                                    |                                                                                           |                   | Austin             |               |            |             |              |                     |                  | Solid Jobs Build ID 162208 |                              |         |       |        |  |  |
|                                                                                     |                                                                                           |                   | CoCr_180314_162208 |               |            |             |              |                     |                  | Name                       | Qty Serial                   |         | Rerun |        |  |  |
| Facety Fater Acoun                                                                  |                                                                                           | Machine           |                    | \$12006       |            |             |              |                     |                  |                            | 4                            | 3 N/A   | ×     |        |  |  |
| CoCr                                                                                | G                                                                                         | Material          |                    | Cobalt Chrome |            |             |              |                     |                  |                            | 1                            | 3 N/A   | ×     | 11     |  |  |
| 69404 CoCr_180213                                                                   | 157105 *                                                                                  | X Scale (%)       |                    | -0.009        |            |             |              |                     |                  |                            |                              | a linke |       | 1. 100 |  |  |
| 69433 CoCr_180214                                                                   | 158318                                                                                    | Y Scale (%)       |                    | 0             |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69454 CoCr_180215                                                                   | Scale                                                                                     | Beam Offset (m    | m)                 | 0.069         |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69462 CoCr 180216                                                                   | 158319                                                                                    | Layer Thickness   | (mm)               | 0.04          |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69487 CoCr_180217                                                                   | 158320                                                                                    | Platform Temp.    | (C)                | 80            |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69521 CeCr_180214                                                                   | 158321                                                                                    | Build Height (m   | m)                 | 62.92         |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69522 CoCr_180219                                                                   | Scale                                                                                     | Min Charge Am     | ount (%)           | 130           |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69545 CoCr_180220                                                                   | 158839                                                                                    | Max Charge Am     | ount (%)           | 130           |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69589 Cocr 180222                                                                   | 158322                                                                                    | Dosing Boost A    | mount (%)          | 300           |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69612 CoCr_180223                                                                   | 158843                                                                                    | Recoater Speed    | (mm/s)             | 150           |            |             |              |                     |                  |                            |                              |         |       |        |  |  |
| 69613 CoCr_180224_158844 Gas Flow<br>69617 CoCr_180224_158323 Parameter Rev         |                                                                                           | 4                 |                    |               |            |             |              |                     | 1                |                            |                              |         |       |        |  |  |
|                                                                                     |                                                                                           | Co                |                    |               |            | _040_210    | )_Co         |                     |                  |                            |                              |         |       |        |  |  |
| 69672 COLF_180222                                                                   | 158524                                                                                    |                   |                    |               |            |             | 112          |                     |                  |                            |                              |         |       |        |  |  |
| 696/4 COLF_10022/                                                                   | 100005                                                                                    | Build Start       |                    |               |            | Build Fi    | nish         |                     |                  |                            |                              |         |       |        |  |  |
| 69697 COLL_160228                                                                   | 150045                                                                                    | Blend ID          |                    | 2928          |            | Material    | Added?       |                     |                  |                            |                              |         |       |        |  |  |
| 69722 COL 180222                                                                    | 69772 CoCr_180305_158325 Measured Laser Power (W<br>69774 CoCr_180305_158326 Plate Serial |                   | Power (W)          | 405           |            | End Date    | /Time        | 5/17/2016 • SIOT AL |                  | M -                        | 4.0                          |         |       |        |  |  |
| 60775 CaC 180205                                                                    |                                                                                           |                   |                    | 10-01-00086   |            | Actual Bu   | ild Time     | 47.2                |                  |                            | Build Notes                  |         |       |        |  |  |
| 69797 Carr 180222                                                                   | 168328                                                                                    | Plate Weight (k)  | <b>D</b> )         | 14.3          |            | Filter Ligh | t Came On?   | M                   |                  |                            | RFS @ 4.0                    |         |       |        |  |  |
| 69911 CoC 180222                                                                    | 158320                                                                                    | Plate Thickness   | (mm)               | 28.34         |            | Laser Hou   | ars          | 13419               |                  |                            | 130/130                      |         |       |        |  |  |
| 40071 CaCr 180314                                                                   | 162208                                                                                    | Part Piston Heig  | int (mm)           | -5.021        |            | Build Hei   | ght (mm)     | 62.92               |                  |                            | Color Bartila                |         |       |        |  |  |
| 69977 CoCr 180314                                                                   | 160500                                                                                    | Feed Piston Hei   | ght (mm)           | 442.21        |            | Part Pisto  | n Height (mm | -67.841             | l,               |                            | Cocretonie                   |         |       |        |  |  |
| 70028 Cor 180317 162313 Inert Date/Time                                             |                                                                                           |                   |                    | 1/1/0001 •    | 12:00 AM   | Feed Pist   | on Height (m | m) 279.56           |                  |                            |                              |         |       |        |  |  |
| 20042 Care 180310 162214 F9 Filter Serial                                           |                                                                                           | F9 Filter Serial  |                    | 00204         |            | Breakout    | Date         | 3/19/2              | 018 • 7:45 AM    | 10 C                       | Old Blend Weight (kg) 123.26 |         |       |        |  |  |
| 70047 CoCr 180319                                                                   | 162215                                                                                    | H13 Filter Serial |                    | 00009         |            | Plate Wei   | ght (kg)     | 17.65               |                  |                            | Refresh Batch # 7267         | 20.02   |       |        |  |  |
| 70047 CoCr 180319<br>70048 CoCr 180319                                              |                                                                                           |                   |                    | 43337         |            |             |              |                     |                  |                            | Refresh blend weight (kg     | ) come  |       |        |  |  |
| 70028 Catr 180317,<br>70047 Cotr 180319,<br>70048 Catr 180319,<br>70049 Catr 180319 | 162450                                                                                    | Laser Hours       |                    | 133/3         |            |             |              |                     |                  |                            |                              |         |       |        |  |  |

# **strata**sys

DIRECT MANUFACTURING

29500

#### MATERIAL BLEND REPORT

2.34%

5

| Build<br>Build Nu<br>Blend Nu<br>Ma<br>Total Weigh | I Date: 3/14/2018<br>Imber: 69971<br>Imber: 2928<br>Interial: Cobalt Chrome<br>It (kg): 143.28 |         |            |
|----------------------------------------------------|------------------------------------------------------------------------------------------------|---------|------------|
| PO Number                                          | Virgin Lot Number                                                                              | Percent | Used Count |
| 29500                                              | Prax CoCr Lot 21                                                                               | 13.97%  | 1          |
| 29500                                              | Prax CoCr Lot 21                                                                               | 12.33%  | 2          |
| 29500                                              | Prax CoCr Lot 21                                                                               | 10.26%  | 4          |
| 29500                                              | Prax CoCr Lot 21                                                                               | 14.09%  | 5          |
| 29500                                              | Prax CoCr Lot 19                                                                               | 47.00%  | 5          |

Prax CoCr Lot 20



### **MECHANICAL DATA – STRATASYS DIRECT MFG HAS IT**

#### IN625

Blends were kept to a single system.

#### CoCr

Blends were transferred between systems to meet production demands.

#### **IN718**

Virgin material compared material from different lots and different machines.

Elevated Temperature Tensile Results IN718 & IN625 Sampled from multiple machines at varying levels of reuse.



#### **Additive IN625 Property Study**

**Study:** 7 EOS M280 Machines, 2 Material Providers, 8 Material Lots, >55 Builds per Data represents 385 production builds over an 8 month period.

**Testing Included:** 210 tensile bars (tests performed approx. every 4 builds), 14 Chemical, 20 Metallography

Data Analysis: All data submitted to Battelle

IN625

#### **Comparisons:**

- ✓ Build Location
- ✓ Machine to Machine
- ✓ Powder Composition
- ✓ Material Provider

#### AMS 7000:

- ✓ Process Control Document (PCD)
- ✓ Class B Material Chemistry and PSD

#### **Mechanical Testing:**

✓ Nadcap & A2LA Accredited Test House



## **POWDER EVOLUTION / LIFE CYCLE**



#### **TENSILE PROPERTIES OVERLAID ONTO POWDER COMPOSITION**



# **INTRODUCTION OF SEPARATE POWDER LOTS**

IN625



CoCr IN718 High

#### **MICROSTRUCTURE OVER TIME**



#### **MICROSTRUCTURE OVER TIME**



#### **MICROSTRUCTURE – DIFFERENT ORIENTATIONS**









IN625

## MATERIAL CHEMISTRY OVER TIME



35 STRATASYS DIRECT MANUFACTURING

#### **MATERIAL CHEMISTRY OVER TIME**


Yield Strength Material Provider Comparison, Yts



Ultimate Strength Material Provider Comparison, Uts

37 STRATASYS DIRECT MANUFACTURING

IN625 CoCr



StrataSyS





IN625 CoCr IN718 Hig



Material Strength vs. Times Recycled, 1 machine





Material Strength vs. Times Recycled, 2 machines





Material Strength vs. Times Recycled, 3 machines





Material Strength vs. Times Recycled, 4 machines





Material Strength vs. Times Recycled, 5 machines





Material Strength vs. Times Recycled, 6 machines





Material Strength vs. Times Recycled, 6 machines, 2 atomizers



The **different chemistries** produced by different suppliers produced <u>statistically different ultimate</u> <u>tensile strength</u>.

#### Material Chemistry

| Supplier | <b>Supplier 1</b><br>(% by Weight) | <b>Supplier 2</b><br>(% by Weight) |
|----------|------------------------------------|------------------------------------|
| Al       | 0.32                               | 0.14                               |
| Cr       | 21.02                              | 21.54                              |
| Мо       | 9.2                                | 9.1                                |
| Nb+Ta    | 3.66                               | 3.73                               |
| Fe       | 0.04                               | 3.90                               |





Weight (%)

IN625



IN718 High

## **OUT OF THE 220 BARS, 2 APPEARED "DIFFERENT"**



#### **METALLOGRAPIC COMPARISON, BUILDS 51334 & 54747**



Stress Relieved, Additive IN625 (100x)



Solution Heat Treated, HIP'ed, Stress Relieved, Additive IN625 (100x)



IN625

## **CONCLUSION – ADDITIVE IN625**

**Stratasys Direct Manufacturing's mission to control, track, and develop** the AM production process has lead to **vertical integration of multiple post process operations and inspection techniques** providing the industry with:

- An efficient and economic powder management process
- Increased confidence in DMLS material/part quality
- Increased customer confidence
- Insight into powder lifecycle
- Evidence process variation at the additive system level is reduced via certified heat treatments





#### Additive CoCr Property Study

#### 90 room temperature tensile blanks from:

- 2 material provides
- 6 different machines
- 51 bars sampled before corrective action (17 builds)
- 39 bars sampled after the corrective action (39 builds)
- >50 times recycled



90 room temperature tensile blanks from:

- 2 material provides
- 6 different machines
- 51 bars sampled before corrective action (17 builds)
- 39 bars sampled after the corrective action (39 builds)
- 6 different powder evolutions

| Powder Evolution<br>Num. | Machine | <b>Before</b> or After<br>Corrective Action |
|--------------------------|---------|---------------------------------------------|
| 8                        | SI1476  | Before                                      |
| 9                        | SI1991  | Before                                      |
| 10                       | SI1849  | Before                                      |
|                          | SI1476  | After                                       |
| 12                       | SI1849  | Before                                      |
|                          | SI2006  | After                                       |
| 14                       | SI1848  | After                                       |
| 15                       | SI1991  | After                                       |
|                          |         | stratasvs                                   |

DIRECT MANUFACTURING

CoCr

## 90 room temperature tensile blanks from:

- 2 material provides
- 6 different machines
- 51 bars sampled before corrective action (17 builds)
- 39 bars sampled after the corrective action (39 builds)
- 6 different powder evolutions

| Powder Evolution<br>Num. | Machine | <b>Before</b> or After<br>Corrective Action |
|--------------------------|---------|---------------------------------------------|
| 8                        | SI1476  | Before                                      |
| 9                        | SI1991  | Before                                      |
| 10                       | SI1849  | Before                                      |
|                          | SI1476  | After                                       |
| 12                       | SI1849  | Before                                      |
|                          | SI2006  | After                                       |
| 14                       | SI1848  | After                                       |
| 15                       | SI1991  | After                                       |
|                          |         | stratasys                                   |

90 room temperature tensile blanks from:

- 2 material provides
- 6 different machines
- 51 bars sampled before corrective action (17 builds)
- 39 bars sampled after the corrective action (39 builds)
- 6 different powder evolutions



90 room temperature tensile blanks from:

- 2 material provides
- 6 different machines
- 51 bars sampled before corrective action (17 builds)
- 39 bars sampled after the corrective action (39 builds)
- 6 different powder evolutions

| Powder Evolution<br>Num. | Machine | <b>Before</b> or After<br>Corrective Action |
|--------------------------|---------|---------------------------------------------|
| 8                        | SI1476  | Before                                      |
| 9                        | SI1991  | Before                                      |
| 10                       | SI1849  | Before                                      |
|                          | SI1476  | After                                       |
| 12                       | SI1849  | Before                                      |
|                          | SI2006  | After                                       |
| 14                       | SI1848  | After                                       |
| 15                       | SI1991  | After                                       |
|                          |         | etrataque                                   |

DIRECT MANUFACTURING

N718

90 room temperature tensile blanks from:

- 2 material provides
- 6 different machines
- 51 bars sampled before corrective action (17 builds)
- 39 bars sampled after the corrective action (39 builds)
- 6 different powder evolutions



90 room temperature tensile blanks from:

- 2 material provides
- 6 different machines
- 51 bars sampled before corrective action (17 builds)
- 39 bars sampled after the corrective action (39 builds)
- 6 different powder evolutions



## **STUDY OUTCOMES**

#### COMPARISONS:

- Before and after the corrective action
- Machine to Machine
- Material Provider
- Material Blend Composition (times recycled)

#### **PROVOCATIVE THEORIES:**

- Heat treating is a key factor to reducing process variation
- Laser based powder bed deposition process window is larger than previously believed.





#### **INITIAL RUN CHART – ALL DATA AT A GLANCE**





### **INITIAL RUN CHART – FIRST OBSERVATION**





#### **MECHANICAL PROPERTIES**









#### **TENSILE RESULTS SEGMENTED BY POWDER EVO. NUMBER**



DIRECT MANUFACTURING

Additive CoCr Tensile Results

#### **TENSILE RESULTS SEGMENTED THREMAL TEREATMENT**



# TENSILE RESULTS ONLY REPRESENTING FULLY HEAT TREATED MATERIAL.



DIRECT MANUFACTURING

Additive CoCr Tensile Results

#### **MECHANICAL PROPERTES VS. THERMAL CONDITION**



**Mechanical Properties** 











#### **NON-CONFORMANCE - REVISITED**



#### Issue: Lack of fusion

**Location:** The interface between contour and hatch.

#### Change in process parameters:

- ~60% increase in deposition speed
- ~50% increase in laser power
- 0.27 W/m<sup>2</sup> energy density (or flux)
- 9 part build to a 10 part build



### **BEFORE CORRECTIVE ACTION VS. AFTER CORRECTIVE ACTION**



#### Ultimate Tensile Strength

#### Yield Strength Distributions





#### **MATERIAL MANAGEMENT REVISITED**



- SDM Recycles 100% material
- The majority of powder has been recycled.
- No test method is identified to *qualify* recycled powder



#### **TIMES RECYCLED**



72
# **CONCLUSIONS – ADDITIVE COBALT CHROME**

Heat treatment is the larger factor in additive metal mechanical properties than previously beleived.

An ~60% increase in deposition speed through a reduction of 0.27 W/m<sup>2</sup> along with an 11% increase of deposited material had negligible affect on mechanical properties.

Stratasys Direct recognizes a corrective as an opportunity to increase manufacturing efficiency to provide the customer product faster at a reduced priced.

Stratasys Direct now provides industry with internal **tensile specification minimums for CoCr**.



### **ADDITIVE API IN718 STUDY**

# WHAT IS ADDITIVE API IN718?

### API – American Petroleum Industry

API Standard 6A718 – Nickel Base Alloy 718 (UNS N07718) for Oil and Gas Drilling and Production Equipment.

- Chemistry
- Metallography
- Tensile
- Impact
- Hardness



### **MANUFACTURING STUDY PARAMETERS**

- Machine Systems: M280, M290, M400
- Builds Per Machine: 3 (1 with 100% Virgin Material, 2 with highly recycled material)
- Locations on Build Plate: 5
- Samples at each location: 2 tensile, 4 (2 z, 2 y) impact, 2 microstructure
- Total Tested Sample Size: 90 per mechanical property, 11 metallurgical samples













FR







FR













FR











#### **PROCESSING – API SPEC'ED HEAT TREATMENTS**





### **Testing Standards and Study Comparisons**

#### **Mechanical Properties:**

Tensile, ASTM E8 (gage length 4x gage diameter) Impact, ASTM E23

#### **Mechanical Property Comparisons:**

Machine Systems Build Locations Material Recyclability

**Orientation Dependent Izod Impact** 

#### Additive API IN718 vs. Wrought API IN718

#### **Microstructure Comparisons:**

XY and YZ grainsize



#### **MACHINE SYSTEM COMPARISON – TENSILE RESULTS**

Machine Comparison, Tensile Properties produce on EOS M280's, M290's, & M400's



#### **BUILD LOCATION COMPARISON – TENSILE PROPERTIES**



**Build Location Comparison, Tensile Properties** 



# TENSILE PROPERTIES PRODUCED WITH VIRGIN VS. HIGHLY RECYCLED POWDER



Virgin vs. Highly Recycled Material - Tensile Properties



### **TENSILE PROPERTIES AS A FUNCTION OF TIMES RECYCLED**



#### **NOTCHED BAR IMPACT**

#### **Reported Measurements:**

Absorbed Energy (ft-lbs): difference in energy of the striking unit at the instant of impact.

Lateral Expansion Measurement (mils): the sum of material expansion on both sides of the sample perpendicular to the striking direction.

#### **Percentage of shear fracture (%):**

difference between total fractured area and the area of unstable fracture region.

#### All impact testing was performed at -75F per API specification.

\*Figures from ASTM E23, "Standard Test Methods for Notched Bar Impact Testing of Metallic Materials."

Lateral Expansion: Larger of A2 or A4 plus the larger of A1 and A3.



FIG. 6 Halves of Broken Charpy V-Notch Impact Specimen Illustrating the Measurement of Lateral Expansion, Dimensions A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, A<sub>4</sub> and Original Width, Dimension W

**Percent of Shear Fracture:** A\*B/total fracture region



# **MACHINE SYSTEM COMPARISON – IMPACT**

Absorbed Energy – Fracture Plane XY





Vertical-sample Fracture Plane XY





**Strata**SVS



# IMPACT PROPERTIES PRODUCED WITH VIRGIN VS. HIGHLY RECYCLED POWDER

Absorbed Energy as a Function of Material Recycling – Fracture Plane XY 30 20.6 25 21.2 21.6 20.8 20 Energy (ft-lbs) 21.6 20.8 15 10 Vertical-sample 5 Fracture Plane XY 0 10 15 20 25 0 5 **Times Recycled** 



## **VERTICAL VS HORIZONTAL IMPACT PROPERTIES**







#### HORIZONTAL DIRECTIONAL IMPACT PROPERTIES



| Notch Location | Fracture Direction |
|----------------|--------------------|
| А              | X+                 |
| В              | Z-                 |
| С              | X-                 |
| D              | Z+                 |





# **ADDITIVE API718 METALLOGRAPHY**

XY vs. ZY

XY has a higher frequency of equiaxed grains than ZY Wider range of duplex grain structure in the ZY plane.







#### **CONCLUSTIONS – ADDITIVE API IN718**



**SECTION Three** 

# Elevated Temperature Tensile Results – IN718 and IN625



### FRAMING THE SCOPE OF THE STUDY

Metallic Materials Properties Development and Standardization (MMPDS) Handbook

- A source of accepted A, B, and S basis allowables for metallic material and fasteners.
- It is recognized by the FAA, DoD, and NASA

#### **Properties at Elevated Temperature:**

- At temperatures above room temperature generally result in a decrease in strength and an increase in ductility.
- Data is plotted as **percentages of room temperature allowable property** against temperature.



### **IN718 EXPECTED BEHAVIOR**

Expected Behavior of Solution-treated and Aged IN718



## **IN718 – FIRST GLANCE**

# Temperature Effect on the Tensile Strength of Additive solution-treated and aged IN718

DIRECT MANUFACTURING



### **EXPECTED BEHAVIOR OR ADDITIVE IN718**

Temperature Effect on the Tensile Strength of Additive solution-treated and aged IN718

DIRECT MANUFACTURIN



### **EXPECTED BEHAVIOR OR ADDITIVE IN718**

Temperature Effect on the Elongation of Additive solution-treated and aged IN718



Temperature (deg F)



# SMALL (0.16") VS. LARGE (0.25") DIAMETER BARS

#### ASTM E8, Round Bars, gage length 4X gage diameter



StrataSys

# ADDITIVE IN718 TENSILE PROPERTIES AS A FUNCTION OF RECYCLING





### **ADDITIVE IN718 METALLOGRAPHY**

Tested 6 Samples for Grain Size in the XY and XZ planes.

Every sample (regardless of orientation) has an average grainsize ASTM No. 3.5 to 4.5.



Precipitation Hardened, Solution Heat Treated, HIP'ed, Stress Relieved, Additive IN718(100x)



### A COMPARISON OF DIFFERENT THERMAL PROCESSING





### **IN625 EXPECTED BEHAVIOR**







### **ADDITIVE IN625 AT FIRST GLANCE**





# ADDITIVE IN625 TENSILE PROPERTIES AS A FUNCTION OF RECYCLING

#### Ultimate Tensile and Yield Strength of Additive IN615



#### Material Properties are consistent regardless of the time recycled.


## **CONCLUSIONS – ELEVATED TEMPERATURE TENSILE**

The elevated temperature tensile response of additively produced nickel base super alloys is similar to the expected behavior or wrought materials.

**Recycling of feedstock material has little to no influence** on room or elevated temperature properties of IN718 and IN625.

The appropriate heat treating is required to achieving expected behavior in tensile response at elevated temperatures.

**Stratasys Direct Manufacturing**, committed to promoting the wide spread adoption of Additive Manufacturing as a viable means of producing end-use critical components makes these manufacturing studies available to industry.









## CONCLUSION



## **THANK YOU**

Andrew Carter Senior Manufacturing Engineer Stratasys Direct Manufacturing Austin, TX <u>Andrew.Carter@stratasysdirect.com/</u> 512-655-5019

